翻訳と辞書
Words near each other
・ Hyperbolic quaternion
・ Hyperbolic secant distribution
・ Hyperbolic sector
・ Hyperbolic set
・ Hyperbolic space
・ Hyperbolic spiral
・ Hyperbolic structure
・ Hyperbolic tetrahedral-octahedral honeycomb
・ Hyperbolic trajectory
・ Hyperbolic tree
・ Hyperbolic triangle
・ Hyperbolic trigonometry
・ Hyperbolic volume
・ Hyperbolization theorem
・ Hyperboloid
Hyperboloid model
・ Hyperboloid structure
・ Hyperbolus
・ Hyperborea
・ Hyperborea (album)
・ Hyperborea (band)
・ Hyperborea (collection)
・ Hyperborea (disambiguation)
・ Hyperborea (moth)
・ Hyperborean cycle
・ Hyperbow
・ Hyperbowl Plus! Edition
・ Hyperbubble
・ Hypercacher
・ Hypercalcaemia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hyperboloid model : ウィキペディア英語版
Hyperboloid model

In geometry, the hyperboloid model, also known as the Minkowski model or the Lorentz model (after Hermann Minkowski and Hendrik Lorentz), is a model of ''n''-dimensional hyperbolic geometry in which points are represented by the points on the forward sheet ''S''+ of a two-sheeted hyperboloid in (''n''+1)-dimensional Minkowski space and ''m''-planes are represented by the intersections of the (''m''+1)-planes in Minkowski space with ''S''+. The hyperbolic distance function admits a simple expression in this model. The hyperboloid model of the ''n''-dimensional hyperbolic space is closely related to the Beltrami–Klein model and to the Poincaré disk model as they are projective models in the sense that the isometry group is a subgroup of the projective group.
== Minkowski quadratic form ==
(詳細はquadratic form is defined to be
: Q(x_0, x_1, \ldots, x_n) = x_0^2 - x_1^2 - \ldots - x_n^2.
The vectors such that form an ''n''-dimensional hyperboloid ''S'' consisting of two connected components, or ''sheets'': the forward, or future, sheet ''S''+, where ''x''0>0 and the backward, or past, sheet ''S'', where ''x''0<0. The points of the ''n''-dimensional hyperboloid model are the points on the forward sheet ''S''+.
The Minkowski bilinear form ''B'' is the polarization of the Minkowski quadratic form ''Q'',
:B(\mathbf, \mathbf) = (Q(\mathbf+\mathbf) - Q(\mathbf) - Q(\mathbf)) / 2 .
Explicitly,
:B((x_0, x_1, \ldots, x_n), (y_0, y_1, \ldots, y_n)) = x_0y_0 - x_1 y_1 - \ldots - x_n y_n .
The hyperbolic distance between two points ''u'' and ''v'' of ''S''+ is given by the formula
:d(\mathbf, \mathbf) = \operatorname(B(\mathbf, \mathbf)) ,
where is the inverse function of hyperbolic cosine.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hyperboloid model」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.